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Abstract. Ir is well known that intravenous administration
of lipopolysaccharide (LPS) induces severe toxicity in
mammals. The maximum tolerated dose of intravenous
administration of LPS in humans is reported to be only I to
4 nglkg body weight. However, oral administration of a high
dose of LPS caused no toxicity or systemic inflammation in
other mammals, birds, or fish. Two weeks of oral
administration of a high dose of LPS (2 mglkg) did not
induce toxicity in a rat experiment. Moreover, several
experiments have reported that oral administration of LPS
had preventative and curative properties against various
diseases, including allergic, and lifestyle-related diseases.
These results demonstrate that mucosal administration of
LPS acts via a different regulatory mechanism in biological
responses from that of parenteral administration. Mucosal
administration of LPS is thought to be quite promising for
prevention of diseases, but LPS is rarely used. In order to
expand the usage of oral administration of LPS for
preventing lifestyle and allergic diseases, it will be
necessary to clarify the mechanisms that arouse immune
responses after oral administration of LPS. This short
review presents a recent observation of the usefulness of
orally administered LPS.
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Structure of LPS

Lipopolysaccharide (LPS) is the major component of the
outer membrane of gram-negative bacteria and has
amphiphilic characteristics due to its hydrophilic
polysaccharide and hydrophobic lipid moieties. Its
fundamental structure comprises three parts: (i) lipid A, (ii)
core sugar, (iii) and O antigen (O-polysaccharide). Lipid A
is composed of 4 to 7 fatty acid chains bound to two
glucosamines, and a core sugar part that is composed of 8
carbon sugar, keto-deoxyoctonate (KDO), which is highly
conserved among bacterial species. The core region is an
oligosaccharide containing characteristic sugar residues,
KDO and heptose, and its chemical variation is more limited
than that of O-antigen. Lipid A acts as a membrane anchor
(Figure 1).

Immunological response to LPS is triggered because of its
binding to the receptors for immune cells and some epithelial
cells, which causes activation of nuclear transcription factors
by intracellular signals. It is generally recognized that CD14
serves as a high-affinity receptor for LPS after catalytic
transfer of LPS monomers by LPS-binding protein (LBP)
and that of the CD14-LPS complex (1). The role and
structure of the toll-like receptors (TLRs) play an important
role in innate immunity. Immune cells recognize specific
structures present on the pathogen, such as peptidoglycan,
lipopolysaccharide, $-1,3 glucan, double-stranded RNA, and
non-methylated CpG DNA (1, 2).

The complex of CD14, TLR-4, and myeloid differentiation
factor-2 (MD2) has a higher sensitivity that can induce
intracellular signals by 0.1 ng/ml concentration of LPS-LBP
complex (3). Consequently, proinflammatory cytokines such
as tumor necrosis factor (TNF)-a, interleukin (IL)-1f, and
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Figure 1. Fundamental structure of lipopolysaccharide (LPS).

IL-6 are induced and activated as immune responses by
dendritic cells (DCs), T- and B-cells, granulocytes, natural
killer cells, and macrophages.

It is believed that the lipid A component of LPS is
responsible for these biological activities. However, our
recent study of the biological function of LPS using specific
monoclonal antibodies against O-polysaccharide components
of LPS indicated the importance of the O-polysaccharide
chain to LPS function. This function can be assumed to
present a lectin-like adaptor molecule associated with
receptors for LPS. It may resemble dectins (4), which are
known to be the binding molecules for 3-1,3 glucan and
associating TLR-2. However, to date there is no study that
identifies the specific receptors for O-polysaccharide of LPS.

Biological Activity of Intravenous
Administration of LPS

Otto et al. reported a clinical trial of intravenous

administration of LPS exerting an antitumor effect that was
investigated in 27 patients with advanced colorectal cancer
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(5). One complete regression and two partial responses were
observed in these patients, however, intravenous injection of
LPS induced transient renal and hepatic toxicities. A phase I
study defined the maximum tolerated dose of intravenous
administration of Salmonella abortus equi LPS in humans as
being 1 to 4 ng/kg body weight (6, 7). Severe constitutional
side-effects, such as fever (World Health Organization grade
I1I), chills, and hypotension, were the dose-limiting toxicities
(6, 8). Acute toxicity of intravenous administration of LPS
in mice was 4 to 8 mg/kg, with a lethal dose of 50 (LD50)
(9). These results demonstrated that intravenous
administration of LPS resulted in severe toxicities by causing
systemic inflammation, however, some beneficial antitumor
effects were anticipated by activation of innate immunity.
The highly sensitive cellular response of immune cells to
LPS observed in vitro also illustrates an evoked immune
response in vivo with intravenously administered LPS.
When LPS is administered intravenously, it causes a dose-
related increase in serum C-reactive protein, TNF-a, IL-1f3,
and IL-6, which further causes severe fever, diarrhea,
vomiting, and hypotension (10). Intravenous administration
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of LPS after pretreatment with dichloromethylene-
diphosphonate  (Cl,MDP)-liposomes resulted in a
significant reduction in mortality, i.e. from 55% to 14%
(11). Therefore, the pathogenesis of lethal toxicity of LPS
is due to systemic overexpression of proinflammatory
cytokines from activated macrophages.

As for the fate of LPS, LPS was measured in plasma
within a few minutes after intravenous administration, and
most LPS was transported to the liver for metabolic
degradation. A small amount of plasma LPS was metabolized
in the spleen, lungs, kidneys, and adrenal glands, and further
excreted in the feces (12).

Biological Effects of Oral Administration of LPS

Oral administration of LPS demonstrates completely different
results when compared to parenteral administration. Oketani
et al. stated that oral administration of LPS is not harmful to
animals (13). Schryvers et al. found no evidence of LPS
toxicity with 20 pg/ml intake after 40 days in mice (14).
Tllyés et al. reported that repeated oral administration of high
doses of Escherichia coli LPS had no demonstrable effect on
small intestinal structure and cell proliferation in rats (15).
We found that high doses of single oral administration of
Pantoea agglomerans LPS (600 mg/kg) had no side-effects
in rats (16). Moreover, oral administration of 300 mg/kg of
this LPS, which was almost 30,000 times more than the
recommended amount of LPS (10 pg/kg) in animals (human,
chicken and fish), for 28 days showed no evidence of
hepatotoxicity, nephrotoxicity, inflammation, or weight
decrease in rats. These findings demonstrate that oral
administrations of LPS are quite safe for animals.
Biological responses evoked because of oral
administration of LPS have been reported. Murakami et al.
reported that B-1 cells derived from the lamina propria in gut
and peritoneal cavity were activated by oral administration
of Salmonella LPS (100 pg/mouse) after 7 days in normal
C57BL/6 mice (17). B-1 cells are thought to be a kind of
phagocyte because of their ability to uptake apoptotic
thymocytes and E. coli both in vitro and in vivo (18), and
they possess differentiating potential similar to phagocytes
(19). Chen et al. reported that oral administration of E. coli
LPS (10 pg/ml of drinking water) protected against bacterial
translocation and peritoneal macrophage suppression caused
by the administration of antibacterial drugs in severely
burned mice (20). Oral administration of LPS has beneficial
properties that protect against intestinal bacterial infections.
Masuda et al. reported that activated Paneth cells secrete
cryptdin-4 (21), which has the most potent microbicidal
activity among defensins and may be induced by LPS (22).
Rakoff-Nahoum et al. demonstrated that oral administration
of LPS rescued commensal depleted mice from DSS-induced
mortality (23). Mdrquez-Velasco et al. reported that

prophylactic oral administration of LPS to mice that
underwent cecal ligation and puncture, significantly
increased their survival rate and reduced the inflammatory
responses in target organs (24).

We have reported that a hot water extract of wheat flour
(oral administration) contains macrophage-activating
substances derived from concomitant gram-negative plant-
associated bacteria such as P. agglomerans. LPS of this
bacterium is termed as IP-PAl, and is a major macrophage-
activating substance (25, 26). Research has demonstrated that
it is useful for preventing lifestyle-related, allergic, and
infectious diseases in both human and animal models. Oral
administration of P. agglomerans LPS was useful for
preventing hyperlipidemia (rabbits) (27), diabetes mellitus
(mice and humans) (28), various infectious diseases (mice and
shrimps) (25, 29, 30), and ulcerative colitis (mice) (31), and
produces analgesic effects (mice, rats, and humans) (32-34).

Possible Pathways of Oral Administration of LPS
through the Intestinal Tract

Benoit et al. reported that pure LPS did not pass across the
intestinal mucosa in vitro (35). However, other reports have
demonstrated that detectable amounts of LPS increased after
oral administration of LPS in animals (36-38). It is estimated
that 0.1 to 0.25% of orally administered LPS can be detected
in blood by using Z°I-labeled LPS. If 1 mg of LPS
administration is absorbed to this ratio, 1 to 2 ug of LPS
should mathematically exist in blood (36). This amount is
enough to cause significant systemic inflammation in mice by
intravenous injection. However, 1 mg of oral administration
of LPS showed no increase in free cytokines (unpublished
data). From these results, we determined that the absorption
mechanism of orally administered LPS in intestine is different
from that of intravenous administration. Possible pathways of
ingestion of LPS by the small intestine mucosal tract recently
reported are summarized in Figure 2 (20, 36, 39-44).

These pathways of LPS translocation may allow its
penetration into lymphoid tissues, such as Peyer’s patch and
mesenteric lymph nodes. However, these translocation
pathways do not help to clarify the mechanisms of biological
function by oral administration of LPS. To fully investigate
the mechanism and fate of orally administered LPS, it will
be important to assay the systems to describe the condition
of innate immune cells after its administration.

Perspectives on Oral Administration of LPS

LPS is an abundant substrate, for example, almost all foods
contain 1 ng to 1 ug of LPS per gram of their weight.
Moreover, humans constantly come into contact with huge
amounts of bacteria in oral and intestinal mucosa. The
estimated number of human commensal bacteria range from
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103 to 102 per gram of tissue (45). Thus, humans are
constitutively exposed to LPS throughout their lives. Some
reports indicate that exposure to LPS in this manner may be
important for the maintenance of host immune balance (anti-
allergic predisposition) (46, 47), and protection from
bacterial infections in the intestine (21).

The toxicity of oral administration of LPS is quite low, and
many papers provide convincing evidence that support there
being various beneficial effects for allergic and lifestyle-
related diseases. Thus, in the near future, oral administration
of LPS is expected to be used for maintaining animal health.
To promote oral usage of LPS, the mechanistic explanation
of prevention and cure of various diseases will be needed, but
the mechanism to regulate the host’s health by oral
administration of LPS is not yet clear at all. It is important to
discover these underlying mechanisms because it is likely that
they are quite different from those occurring with intravenous
administration of LPS.

An evaluation method useful for accurate determination of
the response to orally administered LPS has not yet been
developed. We believe that one possible mechanism of the
effect of oral LPS is ascribable to the induction of a priming
stage (48). Moreover, recognition of foreign substances
(bacteria, viruses, and apoptotic cells) by innate immune
cells was up-regulated in the priming stage. In a mouse
model, intravenous administration of LPS (0.1-1 ng/mouse)
induces the priming stage. This amount of LPS is almost
200,000 times less than the LD5j of LPS (200 pg/mouse) (9)
and is safe and non-toxic because it does not induce the
release of proinflammatory cytokines in mouse blood.
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Molecular analysis of a priming stage was indicated by the
existence of pro-TNF-a on macrophage membrane (49).
Interestingly, pro-TNF-a acts as a ligand and receptor for
neighboring macrophage cells, namely the primed
macrophages, and they can respond bidirectionally with a
reverse signal system (50, 51). Taken together with these
data, we propose that the mechanism for maintaining
homeostasis by oral administration of LPS includes a signal
transfer system via cell to cell contact (termed the
macrophage network system) (26, 52).
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