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Review

Unique Molecular Characteristics of the Environmental
Responses of Mucosal Macrophages
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Abstract. Macrophages are thought to be the cells that
initially respond to environmental information and transmit
this information to other immune cells. We hypothesize that
there is a "network system" consisting of various tissue
macrophages; the macrophages respond to stimulation and
transmit secondary information to neighboring cells, which is
important for the maintenance of homeostasis. Macrophages
exist in all animal organs as tissue macrophages, and their
cellular characteristics may change as an adaption to tissue-
specific environments. It is believed that mucosal macrophages
are particularly important in the macrophage network system
because mucosa exist where there is regular exposure o foreign
substances. However, the molecular mechanism by which
intestinal mucosal macrophages respond to the external
environment is not yet clear. In this review the biological
characteristics of mucosal macrophages are introduced and
how they recognize and eradicate various foreign substances is
discussed.

Maintaining Homeostasis with the Macrophage
Network

Macrophages play a central role in the immunological defense
mechanism against invasive pathogens; they are the first cells
to recognize foreign substances and to remove them by
phagocytosis. Thereafter, they transmit this primary
information to neighboring cells by secreting cytokines, by cell
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adhesion and by migration and antigen presentation. Kohchi
et al. presented a concept called the "macrophage network"
hypothesis in which there is an information signal-transfer
system from local activated macrophages to other
macrophages by cell-to-cell contact (1). Tissue macrophages
are variously named depending on their location, for example,
microglias in the brain, Kupffer cells in the liver and alveolar
macrophages in the lung. Macrophages were originally
monocytes that differentiated from bone marrow cells,
migrated to various tissues of the body via the circulatory
system (2) and differentiated into various tissue-specific
macrophages (3). Tissue macrophages retain the essential
functions of macrophages, expressing different characteristics
depending on their tissue location. For example, Kupffer cells
and alveolar macrophages have similar abilities for antigen
presentation and secretion of immunological mediators.
However, Kupffer cells have substantially higher phagocytic
activity than alveolar macrophages, while the macrophages
produce significantly greater quantities of reactive oxygen
species and nitric oxide (NO) than Kupffer cells (4). Thus, it
is thought that macrophages play a central role in homeostasis
maintenance based on the macrophage network hypothesis
(the signal transduction system utilizing macrophage-to-
macrophage interactions).

The Mechanism Used by Macrophages for the
Recognition and Elimination of Foreign Substances

Macrophages can eliminate foreign substances by
phagocytosis, recognizing and targetting a wider range of
foreign substances than other phagocytes, such as
neutrophils. Moreover, macrophages can recognize foreign
bodies, such as microorganisms, and also cells derived from
the body itself, such as wasted erythrocytes and cancer cells
(5, 6). Therefore, the target of macrophages may be all
foreign substances, which are recognized by various types of
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receptors; these differ from specific antigen receptors, such
as T-cell receptors and B-cell antigen receptors. Especially
important are the pattern recognition receptors (PRR) that
are involved in the discrimination of foreign substances (7).

In mammals, the molecules of PRR include Toll-like
receptors (TLRs), which are homologs of insect TLR. TLR
was originally discovered as a differentiation factor in
Drosophila and was later found to be involved in the self-
defense response (immunity) (8, 9). Currently, eleven
human homologs of TLRs (1 to 11) have been identified
(10-12). Each TLR recognizes a specific structure of a
microorganism, such as the flagellum and/or cell-wall
structures, and then evokes innate immunity responses.
TLR4 was first discovered as the LPS receptor in mammals
(13). Generally, TLRs have leucine-rich repeats in the
extracellular region, and a highly homologs cytoplasmic
Toll/interleukin-1 receptor (TIR) domain, similar to that of
the interleukin-1 receptor family. After ligand binding, a
signal cascade of TLRs involves adaptor molecules with TIR
domains, such as MyD88, TIRAP, TRIF and TRAM. In
particular, MyD88 appears to be a control adaptor
molecule, which is associated with NF-kB and MAPK (p38
and JNK) activation. However, TLR3 and TLR4 have
another signal transduction cascade through activation of
IRF3 and NF-kB that does not involve MyDS88 (10).
Macrophages secrete pro-inflammatory cytokines, such as
TNF, which activate neighboring cells which then eliminate
foreign substances.

Expression of Recognition Receptors of Foreign
Substance in Intestinal Mucosa

Defense from foreign substances is important for
maintaining homeostasis. The gastrointestinal mucosa has
the largest internal surface in the body in contact with the
external environment: in order to enable -efficient
absorption of nutrients and water, the surface area is
equivalent to 1.5 tennis courts (14). However, besides food,
the intestine also contains large numbers of microorganisms
and microbial products (15). It is known that many bacteria
in the intestinal flora have an effect on the digestion and
absorption of food, as well as on immunity (16-19). In order
to avoid unnecessary inflammation, there is no
inflammatory response in intestine with concomitant
bacteria or their components (20). When pathogenic
bacteria invade the intestine, a defense response is induced
by immune cells, such as macrophages in the lumen. If the
defense mechanism of the intestine fails, septicemia or
endotoxin shock occurs (21-23). Many researchers have
investigated the humoral and cell-mediated immunity of the
acquired immune systems, but little research has been
conducted on mucosal immunity, and this type of immune
system is substantially different. The foreign substance
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recognition receptor group, including TLRs, has only
recently been discovered, leading to a rapid increase in
understanding of the mechanism of mucosal immunity. It is
now clear that the tolerance of normal intestinal mucosa is
inversely correlated with surface receptor expression on
intestinal epithelial cell (IEC), which limits front-line
recognition of foreign substances (24, 25), and is positively
correlated with an increased expression of a downstream
signaling suppressor, Tollip (26), and the existence of
external regulators which suppress TLR-mediated signaling
pathways (20).

Characteristics of Intestinal Macrophages

Most macrophages are found in the intestine, where they
are believed to play a role in the elimination of
undesirable foreign substances and pathogens that could
otherwise enter the body from the intestine (27). We
hypothesized that intestinal macrophages have the most
important position in the macrophage network. However,
there are only a few reports on the mechanism of foreign
substance recognition and elimination by intestinal
macrophages. Previous papers have reported that intestinal
macrophages can phagocytose foreign substances but are
not then activated (28). In addition, it has been found that
intestinal macrophages could phagocytose latex particles
(29), but could not produce either tumor necrosis factor
(TNF) or NO after stimulation with various macrophage-
activating materials, such as LPS, TPA and PWM (28, 30,
31). Their hypo-responsiveness to foreign substances has
been attributed to lower expression or defects in the
recognition receptors on the intestinal macrophages (32).

Expression of LPS Receptors in Intestinal
Macrophages

Immunohistochemical and flow cytometric studies have
shown that intestinal macrophages do not express CD14
(LPS receptor) (28, 32-36), CD89 (Fca receptor) (28, 32,
35), CD16 (28, 36), CD32, CD64 (Fcy receptor), or CD25
(IL-2 receptor) (28). In particular, detection of CD14, a
general surface marker of macrophages, has been widely
recognized as a specific feature of intestinal macrophages.
In CD14 knockout mice, the mice were more resistant to
LPS-induced lethal shock (37) and produced significantly
smaller amounts of cytokines in response to LPS (38). CD14
exists as a glycosyl phosphatidylinositol (GPI)-anchored
membrane protein on macrophages. As it lacks a
transmembrane domain, it is incapable of transmitting a
signal through the membrane. Therefore, it was postulated
that an accessory molecule performs signal transduction,
creating a functional LPS-receptor together with CD14.
TLR4 and MD-2 are already known to be accessory
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Figure 1. Intracellular expression of CD14 in intestinal macrophages.
CD 14 protein on the cell surface and in the cell was compared in mouse
intestinal macrophages and RAW264 cells (mouse monocyte cell line) by
flow cytometry.

molecules for CD14. It was confirmed, by a mapping
analysis of LPS using LPS-hyporesponsive C3H/Hel mice
(39) and TLR4 knock-out mice (40), that TLR4 is the major
LPS receptor. Also, MD-2 was identified as the assembly
molecule with TLR4 (41). Although direct binding of LPS
to TLR4 has not been proven, MD-2 is thought to be an
essential molecule for LPS and TLR4 binding because of its
ability to directly bind with LPS (42-44). Also, because
CD14 and TLR4/MD-2 molecules recognize different
portions of LPS, these molecules appear to transfer
intracellular signals synergistically (45, 46). There have been
several reports on the regulatory mechanism of CDI14
expression by intestinal macrophage: (i) it is possible to
constitute CD14 intestinal macrophage-like cells using co-
culture with IECs (47, 48); (ii) Smythie ef al. reported that a
factor released from the intestinal stroma suppressed the
expression of CD14 on monocytes (28); (iii) Austin et al.
studied an in vitro model of epithelial injury and loss, and
reported that intestinal macrophages that migrated from the
lamina propria expressed CD14 and responded to LPS (49).
These phenomena demonstrate that intestinal macrophages
suppress CDI14 expression, although the molecular
mechanism is still not clear.

For CD14 mRNA, there are reports comparing the
expression or non expression of CD14 mRNA of intestinal
macrophages with that of peripheral blood macrophages. It
is believed that the reason that expression of CD14 in the
colon was higher than in the small intestine (50), was the
difficulty in detecting these small genes with the
experimental techniques used (the Northern-blotting
method and RT-PCR). In our experiment, macrophages

were isolated from rat colons and then analyzed by real-time
PCR as this technique is able to detect this small gene. The
results confirmed that intestinal macrophages express more
CD14 mRNA than alveolar macrophages, but less than
peritoneal macrophages (51). Like intestinal macrophages,
alveolar macrophages reside in the mucosa and have a
direct interface with the external environment. Their CD14
expression remains at the lowest level when they are not
stimulated (52). At lower concentrations of LPS (<0.1
ng/ml), alveolar macrophages behaved much like intestinal
macrophages as they did not produce either TNF or NO
after LPS stimulation. However, at high concentrations of
LPS (>10 ng/ml), one to ten times higher TNF and NO
production levels were observed than had occurred in
peritoneal macrophage cell lines and monocyte cell lines
(53-55). These results indicate that there is a correlation
between CD14 expression and LPS responsiveness because
of the increase of CD14 mRNA after LPS stimulation.
Thus, intestinal macrophages are also thought to express
sufficient CD14 mRNA as a response to LPS. In the m-
ICcy; intestinal epithelial cell line. the expressed
TLR4/MD-2 proteins are localized on the Golgi apparatus
and not on extracellular membranes (56, 57). This fact
suggests that it is possible that CD14 and TLR4/MD-2
proteins exist intracellularly in intestinal macrophages. We
also confirmed the intracellular expression of CD14 protein
in intestinal macrophages by flow cytometry after increasing
membrane permeability and found both CD14 and the
TLR4/MD-2 protein complex expressed in the cells (Figure
1). These results suggest that intestinal macrophages
synthesize LPS-associated receptor proteins in the
intracellular region, but these proteins are not transported
onto the membrane surface of the intestinal macrophages.
In the above mentioned report on m-IC¢, cells, it was
demonstrated that intracellular TLR4/MD-2 was able to
transduce LPS signals, and that gp96 of chaperone is related
to the transportation of TLR4/MD-2 onto the cell
membranes. After an epithelial injury, the signal
transduction system of intracellular CD14 or TLR4/MD-2
is also activated in intestinal macrophages, as in the m-
IC¢; cells. This is apparent since they express membrane
CD14 and LPS responsiveness after migration out of the
lamina propria.

Macrophages that recognize and eliminate foreign
substances play an important role in the maintenance of
homeostasis. Intestinal macrophages are not activated by
foreign substances, and it is still unclear how they
exchange information with other cells. It is well known
that low expression of CD14 by intestinal macrophages is
associated with hypo-responsiveness to foreign
substances. Our previous studies also indicate that,
intestinal macrophages do not express CDI14 on
membrane surfaces, and in macrophages from various
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Figure 2. The expression of the LPS receptors in alveolar and intestinal macrophages. Although alveolar macrophages express little CD14 in a normal
state, expression was increased by stimulation and was related to an increased production of TNF and NO.

tissue there are no differences in the different mRNA
expressions of signal transduction associated with
molecules except for CD14 (51). However, so far there
have been no reports on the mechanism of inhibition of
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CD14 protein expression in intestinal macrophages. Our
recent studies strongly suggest that CD14 expression of
intestinal macrophages is inhibited at the level of
membrane transport. Moreover, this is believed to be a
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completely different inhibitory mechanism than that
employed by alveolar macrophages, which also exist in
the mucosa (Figure 2). These phenomena require further
investigation.
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